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Series Expansions from Corner Transfer Matrices: 
The Square Lattice Ising Model 

R. J. Baxter 1 and I. G. Enting ~ 

Received February 6, 1979 

The corner transfer matrix formalism is used to obtain low-temperature 
series expansions for the square lattice Ising model in a field. This algebraic 
technique appears to be far more efficient than conventional methods based 
on combinatorial enumeration. 
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1. I N T R O D U C T I O N  

Exact series expansions have been of considerable importance in the investi- 
gation of the critical behavior of  lattice models in statistical mechanics. In 
spite of the large number of  techniques which have been devised, the deriva- 
tion of significant numbers of series coefficients is a formidable problem. 
Most techniques are based on combinatorial enumeration (" graph-counting") 
and the number of  series terms which can be obtained is limited mainly by 
the rate at which graph embeddings can be counted using digital computers. 
The present paper describes an algebraic technique for obtaining series 
expansions for various Ising models on the square lattice using an algebraic 
method based on the work of Baxter (1~ (hereafter referred to as I). Wortis (2~ 
has commented that the most efficient techniques for obtaining series expan- 
sions tend to replace combinatorial complexity by algebraic complexity. 

Baxter ~1,3~ has described a hierarchy of variational approximations for 
the partition functions of lattice models. The approximations involve matrix 
expressions for the eigenvectors of  the transfer matrix. The lowest order 
approximation (using 1 • 1 matrices) is that described by Kramers and 
Wannier, (4~ who showed that the approximation gives the first few series 

1 Research School of Physical Sciences, The Australian National University, Canberra, 
Australia. 

103 
0022-4715]79[0800-0103S03.00/0 �9 1979 Plenum Publishing Corporation 



104 R .J .  Baxter  and I. G. Enting 

coefficients correctly. As n - +  oo the formalism becomes exact and the 
equations [(la)-(lc)] are the variational expressions for the corner transfer 
matrices described by BaxterJ 5"6) 

Throughout this paper we work with the exact equations, which involve 
infinite matrices. Fortunately, for the purposes of  obtaining a finite number 
of coefficients in the series expansion of the reduced partition function K, 
only a small number of rows and columns of the matrices need be considered 
explicitly. This reduction does depend on choosing an appropriate basis for 
the matrices. 

The following sections outline the procedures for obtaining series 
expansions for x from the corner transfer matrix equations. The low- 
temperature expansion for the square lattice Ising model in a magnetic field 
is considered as a test case. 

Section 2 describes the variational expressions for the (infinite) corner 
transfer matrices (as given in I) and shows how the matrix equations can be 
transformed into a more unified form. In obtaining solutions of the equations 
we are at liberty to change the basis, specify various normalization conditions, 
and introduce various scale factors. We make use of all these "degrees of 
f reedom" to simplify the calculations. Section 3 carries out the iterative 
solution of  the equations for the nearest-neighbor Ising model, using the 
procedure described in I, but expressing the results as a power series. This 
example exhibits an important general property, namely that the equations 
are dominated by certain leading order terms and so it is possible to obtain 
the leading power of the eigenvalues of the corner transfer matrices explicitly 
as described in Section 4. This result forms the basis for a considerable 
simplification of the iterative procedure. This is described in Section 5, which 
gives a complete specification of which matrix equations can be used to solve 
for any required matrix element. Once this is known it is possible to work 
through the equations iteratively, obtaining solutions for the leading powers 
of the matrix elements. Once the leading powers are known, the equations 
can be examined to determine the order to which a matrix element must be 
obtained if some other matrix element is to be given to a specified order. 
These procedures are outlined in Section 6. They form the basis for the 
sequence of computations described in Sections 8 and 9. (Section 7 describes, 
for completeness, the precise way in which we have transformed the equations 
to simplify the calculations. These transformations are purely for computa- 
tional convenience and do not affect the structure described in Sections 5 
and 6.) 

The results tabulated in the appendix show that the algebraic technique 
is particularly efficient. We have been able to expand the reduced partition 
function K to order 23 in the low-temperature variable u. The longest series 
previously obtained extended only to u 11 (Sykes et al.(7~). Similar series 
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expansion techniques should be possible for other square lattice models. 
These are currently under investigation. 

2. THE M A T R I X  E Q U A T I O N S  

The variational equations for the corner and half-row transfer matrices 
are given in Eq. (30) of I. For an isotropic system they are 

~,  F(a, b)A2(b)F(b, a) = ~A2(a) (la) 
b 

~.  w(a, b, a', b')F(a, b)A(b)F(b, b')A(b')F(b', a') 
b,b" 

= vA(a)F(a, a')A(a') (lb) 

At(a) = A(a), Fr(a, b) = F(b, a) (lc) 

Here a, b, a', and b' have values +1 and - 1 ;  each o f F ( + ,  +),  F ( + ,  - ) ,  
F ( - ,  +),  F ( - ,  - ) ,  A(+),  A ( - )  is a matrix; ~: and V are positive real 
numbers; and w(a, b, a', b') is the Boltzmann weight of a face of the square 
lattice with spins a, b, a', and b' at the bottom left, bottom right, top left, and 
top right corners, respectively. Thus the partition function Z is 

z = 1--I (2) 
ff 

where the product is over all faces (i, j, k, l) of the lattice and the sum is over 
the value + 1 or - 1 of every spin. 

If  there are N spins, then in I it is shown that 

= z ~1" = ~ / ~  ( 3 )  

where ~ and ~ are given by the appropriate solution of the matrix equations 
(1). 

In general this solution will be one in which the matrices are infinite- 
dimensional. However, quite good approximations to g can be obtained by 
truncating these matrices and keeping only a few rows and columns. Such 
approximations correctly give the first few terms in a low- (or high-) tempera- 
ture expansion. The more rows and columns are kept, the more terms are 
given correctly. This is the essential idea of this paper. 

Here we consider the usual nearest-neighbor Ising model in a magnetic 
field, with 

w(a, b, a', b') = exp{�89 + bb' + b' a' + a' a - 4) 

+ �88 + b + b' + a' - 4)} (4) 
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where K and L are positive, being given by 

K = J / k T ,  L = H / k r  (5) 

Here the ground-state energy has been subtracted from the Hamiltonian to 
ensure that 

w(+,  + ,  + ,  + )  = 1 (6) 

This is convenient for our purposes, since we shall be obtaining low- 
temperature expansions, which is equivalent to perturbing about the state in 
which all spins are positive. 

Substituting the expression (4) for w into (1), the resulting equations can 
be somewhat simplified by defining 

i f (a ,  b) = e K(~b - 1)12 + L(~ +b- 2)ISAl12(a)F(a ' b)Al12(b)  
(7) 

.~(a) = e(X + z t ' ) (1-~)A(a)  

and 

where 

~(+, +)  = ~(+, - )  = ~ ( - ,  +) = 1 ,  ~( - ,  - )  = u 

~(+) = 1, ~ ( - )  = ~u ~ 
( 8 )  

and (12) 

P i =  1 if s ~ = + l  

= /zu  2 if s i = - I  

u = e-  4K, /z = e-  2L (9) 

The equations then become 

~(a,  b )F(a ,  b ) A ( b ) F ( b ,  a) = ~(a){.~(a)} 3 
b (10) 

i f (a ,  b )F(b ,  b')F(b', a ' )  = ~ ( a ,  a ' ) A ( a ) F ( a ,  a ' ) A ( a ' )  
b,b" 

f o r a ,  a ' = + l o r - 1 .  
It is convenient to introduce the enlarged matrices 

L )  "= o) ) \ F ( - ,  + )  F ( - ,  , S = _ (11) 

where I is the identity matrix. Let the elements i, j of  C, H, and S be c~j, 
h~j, and s~j -- s~3~j, respectively. Then s~ has value + 1 or - 1 depending on 
the block in which the row and column i lie. Define 

~-~j= 1 if s~ or s j = + l  

= u  if s ~ = s j = - i  
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Then Eqs. (10) can be written 

"qk(nc) ikhk j  = ~pi(Ca)~j if s, = sj 
(13) 

(H3)~j = ~T~j(CHC)is ,  all i a n d j  

F r o m  (lc), both  C and H are symmetric matrices. 
In I it was shown that  a basis can normal ly  be chosen in which A ( + )  

and A ( - )  are diagonal matrices. In  most  o f  this paper we shall use this 
representation, so Cis  also diagonal, with elements c~j = c~ 3~j. In t roducing the 
matrix V = H 2, we can write Eqs. (13) explicitly as 

~ ,  ~'ikh~kckhkj = ~p~Cfl 3~j if S~ = Sj (14a) 
/r 

~ ,  vikh~j = ~)~'ijc,hijcj (14b) 

h,khgy = v,y (14e) 
/r 

I f  the matrices C, H, and V are n by n, then i and j take the values 
1,..., n, and the k-summations are f rom k = 1 to k = n. 

The normalizat ion o f  C and H is still undetermined. A convenient way 
to fix it is to require that  

c~ = h n  = 1 (15) 

3. ITERATIVE  D I A G O N A L I Z A T I O N  P R O C E D U R E  

In I an iterative method for  solving the equations was proposed.  In 
terms of  our  present notat ion it can be expressed as follows. 

Define R, U +, and U-  to be the matrices with elements 

rij = (r~jc~/~pjcj3)~/2h~g (16a) 

u~ = vij/(c, cj) 112 (16b) 

u~ = vU[v~vi(cicj)~/2], (16c) 
where 

v~= 1 if s ~ = + l  
(17) 

= u ~/~ if s ~ = - I  

Then Eqs. (14a) and (14b) can be written (using the symmetry o f  H)  

rk~rkj = 3ij if si = si (18a) 
k 

u~rk j  = rij(Vc~) if sj = + 1 (18b) 
k 

u~rkj  = r~j(~Tcj) if sj = - 1 
k 

F r o m  (18b) it is apparent  that  each vcj is an eigenvalue o f  U + (if 
sj = + 1) or  o f  U-  (if sj = - 1 ) .  The column vector j o f  the matrix R is the 
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corresponding eigenvector. Equation (18a) merely states that eigenvectors of 
the same matrix should be chosen to be orthonormal. 

Given an initial guess at ~:, ~, C, H, and V, the iteration procedure is as 
follows: 

(i) Calculate U + and U- from (16b). 
(ii) Diagonalize U + and U- to obtain the r~j and ~?cj in (18). Use (15) 

to obtain ~, and hence c2, ca ..... 
(iii) Calculate ~-lI2h~j from (16a). Use (15) to obtain ~:, and hence the h~j. 

If  h~j is "more accurate" than hi,, then set hs, = h~j. 
(iv) Calculate vii from (14c). Then repeat. 

Note that if C, H, and Vare initially n by n, then so are both U § and 
U-,  so (18) gives 2n eigenvalues cj, and 2n column vectors for R. To obtain 
the correct infinite-dimensional solution, all of these should in principle be 
kept, so the new C and R are 2n by 2n matrices. The rows of R corresponding 
to the n new eigenvalues should at this stage be set to zero. 

Thus the matrices should double in size at each iteration. However, in 
practice it is useful to repeat each iteration once before expanding the 
matrices, so as to obtain the correct leading order behavior of the lower 
elements of R, and the lower-right elements of H, V, U +, and U-. 

To see how this works, suppose that u is small, as it is for low tempera- 
tures. 

If  u is in fact zero, then all spins must be up, and from Section 5 of I it 
is obvious that only F ( + ,  +)  and A(+)  are nonzero, and that they are one 
by one matrices, acting only on the state with all spins up. Thus C, H, and V 
are one by one, with sl = + 1, and (14) has the trivial solution 

~ : = ~  = cl = h l l  = vll = 1 (19) 

Now use this as input to the above iteration procedure, with u small but 
nonzero. Keeping only the leading small-u behavior of each matrix element, 
and setting 

t = t~ 1/2 (20) 

we obtain 

( i )  U § = U -  - -  ( 1 )  

(ii) C =  (10 01), S =  (10 _01), R= (10 10) 

(iii) H= ( tl u to) 

(iv) V = (  1 tu) 
tu tZu z 
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( i )  U + = U -  = 
tu t2u 2 ' tu 112 t2u ] 

tu 
(iv) V =  (tlu (t2 + t~)u2) 

tu (t2 + t4)u2 U-  = , tul/2 (t 2 + t~)u] 

(ii) C = 1 - 1 
t4u2 , S = 1 

t % /  - 1  

_ _ t u l l ~  \ 

tu tu ~/2 1 
R =  0 0 

0 0 

tu t 2u t 6ua t 7u 2 
(iii) H ----- - -  t TU 4 t6U 3 0 0 

tSu a I7U 2 0 0 

1 1 - t u  - t u  /2 t 
tu tU ~/2 1 

R = _t9u5 tTu3 t2 u t2ul �89 / 

tl~189 IsU2 tSUl/2 t3u llz / 

1 tu - t ~ u  ~ - t S u S \  
tu tZu t6u a t 7 b / 2  [ 

(iii) H =  / (21) 
_ t T u  ~ t6u 3 t6u a tTua I 

t 
tSu a tVu 2 tVu a tOu2/  

The next steps would be to calculate the four by four matrices V, U +, 
and U- ,  then the eight by eight matrices C, R, and so on. Note that doubling 
the size of  the matrices does not affect the leading terms of the elements 
already obtained: for instance, the two by two matrix H given above is the 
top-left block of the four by four matrix H. 
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One very useful fact emerges from this procedure: the rows and columns 
can always be ordered so that 

s~ = ( -  1) ~-1 (22) 

and, to leading order in u, 

) . . . . .  
the dots denoting elements that vanish when u = O. These two requirements 
actually fix the ordering of  the rows and columns. We shall call this the 
"na tu ra l "  ordering. 

For a given integer i, let i '  be defined by 

i '  = Int[�89 + 1)] (24) 

Then, from (23), 

r~,,~ = 1 + (~(u) 
(25) 

rj~= ~(u) if j #  i '  

4. L E A D I N G  O R D E R  E Q U A T I O N S  F O R  T H E  ci 

From (25), f o r j  = i the summation in (18a), and therefore also in (14a), 
is dominated for small u by the term k = i'. Using the symmetry of H, and 
the fact that f = 1 + O(u), to leading order (14a) therefore gives 

rwc~.h~,  = p~c~ 8 (26a) 

Further, i f j  = i in (14b), or i f j  = i '  in (14b) or (14c), the summation 
on the rhs is again dominated by the term k = i'. Since ~ = 1 + (9(u), it 
follows that to leading order 

v~,h~,  = r~c~h~c~ 

vwh~.~. = ru.eih~,c~. (26b) 

h~,h~.=, = v w  

These equations can be solved sequentially, giving the leading order 
behavior of cl,  e2, ea ..... The natural way to Write the result is to go back 
to the original matrices A(+)  and A ( - ) ,  whose diagonal elements are p~/4e=, 

and to use a binary, or spin, representation of the indices, setting 

i = {a l , a2 ,  aa .... } 

= 1 + �89  -- al) + 2 ( 1 - -  %) + 4 ( 1 - -  %) + 8 ( 1 - -  %) +- . . ]  (27) 
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where al ,  e2, (ra,... take the values + 1 o i  - 1. Thus the value 1 of  the index i 
corresponds to % = a2 = aa . . . . .  + 1, i.e., all spins up. The value 2 
corresponds to % being down, the rest up;  and so on. 

F rom  (24) it follows that  if i is given by (27), then 

i '  = {eg., %,  %,. . .)  (28) 

and the solution of  (26) is found to be 

p~/'c, = e x p s ( � 8 8  1 ) +  ~ [ ( 2 r -  1)K(cr/rr+ 1 - 1) 
\ l ' = J .  

+ 2 rL(~+ ,  - 1)]} (29) 

Note  that  when L = 0 (no magnetic field) this expression can be written 
as a direct product  in terms of  the spins /~ = ~ r  +*, giving 

o)( o o)(1 ~ o) 
ull2 | ul t | u~ ~ | (30) 

It has been shown (s) that  this result is exact for  all temperatures  T less than 
To, provided u is replaced by the nome of  the elliptic functions that  occur in 
the exact solution of  the zero-field Ising model. (m 

5. S I M P L I F I E D  I T E R A T I V E  P R O C E D U R E  

The iterative method of  solution given in Section 3 is quite general, but  
ra ther  cumbersome. For tunate ly  we found that  for  the nearest-neighbor Ising 
model  it can be enormously  simplified. First write Eq. (14a), w i t h j  = i, as 

ru,c,,h~, = ~p~c, 3 -  ~ ,  r~kh,~c~hk~ (31a) 
kCi" 

and write (14b) and (14c) as 

k # J  
(31b) 

v~j - h=jhss = ~ h~khkj 
lcr 

First calculate the e=, h, ,  (up to some maximum value of  i) f rom (15) 
and the leading order  equations (26). Set h=,~ = h, ,  and set all o ther  matrix 
elements to zero. Now proceed as follows: 

(i) Calculate vll f rom (14c). 
(ii) Calculate ~ f rom (14b), with i = j = 1. 
(iii) Calculate ~: f rom (14a), with i = j = 1. 
(iv) Calculate ~c = ~7/~:. 
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Set i = 2. 

(v) Calculate v,, from (14c). Set v,, i = v,,.  
(vi) Calculate c, from (14b), with i = i'. 
(vii) Calculate h,,  from (31a). Set h,,~ = h,,.  
(viii) Regard (31b) as two linear equations for the v,j and h,j explicitly 

occurring on the lhs, with " k n o w n "  coefficients involving c~, cj, and hjj. 
F o r j  = 1 ..... i, but not equal to i', solve these equations for vo. and h~j. Set 
vj~ = v~j and hs~ = h~j-. 

Now increase i by one, and repeat steps (v)-(viii) up to the desired 
maximum value of i. Then go back to (i) and repeat the whole procedure. 

Basically, this is the procedure we have used to obtain the perturbation 
expansion solution of the equations in powers of u, except that we did not 
necessarily use precisely the sequence indicated. 

6. E X P A N S I O N  IN P O W E R S  O F  u 

As is well known, ~1~ x can be expanded in a power series in u: 

,c = I + izu 2 + 2t,2u 3 + (tz ~ + 6ix 3 - 21z2)u 4 + ... 

= ~ Clr ur (32) 
r = 0  

where each coefficient ar is a polynomial in/~ with integer coefficients. The 
other variables ~:, ~, hl~, hi2 , . . . ,  v l~ ,  v~2,.., in our equations can similarly be 
expanded; for instance, any element h~j of H can be expanded in the form 

hlj = uZ'J{h~so + h~jlu + h~j2u 2 + ""} (33) 

where I, s is a nonnegative integer and the coefficients hijT are functions only 
of/z. The procedure of Section 5 can be used to systematically obtain all such 
coefficients, in particular the coefficients ar in (32). 

The usefulness of the present approach lies in the fact that to obtain 
the first m coefficients in (32) it is only necessary to expand a finite number of 
elements of H and V (all the rest can be taken to be zero), and no more than 
m coefficients are needed in any element. To see this, consider, for example, 
Eq. (14a) with i = j = 1. This equation can be regarded as defining ~:. Using 
(15), we can write it as 

c 2 c4h~1 (34) = 1 + c2h~1 + 3h31 + + " "  

Using the small-u behavior given in Section 3, we obtain the orders of 
magnitude of the various terms in (34) as 

~: = 1 + (r 2) + (9(u x~ + C(u 7) + ... (35) 
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Table 1. Var iables Needed in Calculat ing • to Order  7 a and the M a x i m u m  
Number  of  Terms Needed in the Expansion of  Each Var iable  

Maximum Maximum Maximum 
number of number of number of 

Variable terms needed Variable terms needed Variable terms needed 

vll 8 c2 6 h14 2 
8 h22 5 c1~ 2 
8 v22 4 h44 1 

v12 6 v24 2 vl~ 1 
h12 6 h24 2 

I.e., the first eight terms. Recall that c~ and h~ are fixed to be one. 

The general trend is for the powers o f  u to increase: the largest term omitted 
in (35) is actually o f  order  u ~2. Thus, if we wish to obtain ~: to order u ~ (say) 
f rom this equation, we shall need 

c2 and h21 to relative order  u s (first six coefficients) 
c4 and h~  to leading order  only (first coefficient) 

All other  matrix elements occurring in this equation (including c3 and h31) 
are negligible to this order. 

Of  course, to obtain • to order  u v, we need both  ~ and ~7 to this order, 
so it is also necessary to look at the equat ion used to calculate ~7, and then 
at the equations used to determine all the variables that are needed in calcu- 
lating ~: and ,/, and so on. Even so, we find that  only 14 variables are needed, 
and for many  of  these only the first one or  two terms in their expansions are 
needed, as is shown in Table I. 

Note  in particular that  only elements occurring in rows and columns one, 
two, and four  are needed. All other  elements can be taken to be zero. Thus, 
in using the iterative procedure o f  Section 5 we could stop at i = 4, and ignore 
i (or j )  = 3, provided we need K only to order  u 7. 

I f  we want  ,~ to a higher order, then we of  course need more rows and 
columns of  the matrices. For  instance, to order  u I1 we need elements in rows 
and columns one, two, three, four, and eight. Any  element c~, h~j, v~j with 
either i or j not  equal to one o f  these values can be ignored. 

More  generally, we found empirically the following simple rule: to 
calculate K to order  u 2m + 1 we need only those rows and columns i for which 
p~/2c~2 >>- um. F r o m  (29), this implies that  the ~z, ~2 .... in (27) must  satisfy 

c~ = ~ (2r - 1)(1 - ~rcr~+l) /> 2m (36) 
r = J .  
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Table 2. The First 19 Values of r162 in Nondeereasing Order = 

at i a~ i at i a~ 

1 0 7 12 32 18 9 24 
2 2 16 14 13 20 29 24 
4 6 5 16 31 20 63 24 
3 8 15 16 14 22 10 26 
8 10 6 18 64 22 

This a~ is the leading power of u in the expansion of p~c~ 4. 

This rule makes good sense. The variational expression (31a) for K in I 
contains a factor 

rl = ~. Tr A~(a) (37) 
G 

which in our present notation becomes 

rl = ~ p~c~ 4 (38) 

Thus the rule (36) is equivalent to stating that if the contribution of c~ to r~ 
is negligible (to the required order u 2m +1), then row i and column i may be 
deleted from the matrices. 

In Table I I  the first 19 values of  ~ ,  arranged in nondecreasing order, 
are given. It  can be seen that to obtain K to order u 2a we needed 15 rows and 
columns of the matrices. To obtain K to order u 25 we would need 18 rows 
and columns. 

7. T E C H N I C A L  M O D I F I C A T I O N S  

The coefficients in the expansion of x are themselves polynomials in F, 
with integer coefficients. It  would obviously be a considerable computational 
simplification if this were true of all coefficients of powers of  u that occur, for 
instance, the hijr in (33). 

We ensured this by overcoming two obstacles. The first is that step (vii) 
of  Section 5 involves taking a square root, which can produce half-integer 
leading powers of  u and t~ (as is evident in Section 3), and noninteger coeffi- 
cients. To avoid this we replaced H and V in (14) by P 1/~HP 112 and P 112 VP  ~12, 

where P is a diagonal matrix. The elements h~i, can then be chosen arbitrarily, 
and (31a) regarded instead as a linear equation for p~. 

The o the r  difficulty is in step (viii), which involves dividing by the 
determinant of the coefficients of  v~j and h~j in (31b), namely 

Aij = rl"qjcicj - h~j (39) 
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Let k = 2j if i is even, 2j + 1 if i is odd. T h e n j  = k' ,  and from (26b) it 
follows that to leading order 

A , j  = % c ~ c j  - ~-kjCkCj = "qjCj(C~ - -  Ck) (40) 

since s~ = s~. 
Provided that c~ is not of  the same order as ck ,  A~j is to leading order 

of  the form + tz2Pu ", and there is no problem in dividing by it. 
Since s~ = s~, it is also true that p~ = pk. Thus c~ is of  the same order 

as ck iff c~ = ~k, where ~ is given by (36). Since j = i '  is excluded in step 
(viii), i and k are distinct. 

From Table II  it is apparent that the lowest seven cq are unequal. To 
order 15 in K, only the rows and columns corresponding to these ~ are needed 
in the calculation, so c~ and ck in (40) are always of different orders, and all 
is well. In fact, (31b) becomes effectively two independent equations: one for 
h i s ,  the other for v~j. 

However, when calculating x to higher order, values of  i and k for 
which ~ = ~ (i r k) are needed; the first are 5 and 15. In these cases we 
allowed the off-diagonal element c~k ( =  ck~) of  C to be nonzero, and set h~ i 
(for i < k) to zero. For i < k, step (viii) was then replaced by a calculation 
of  vii and c~k. For  i > k, h u was calculated from (14a), v u from (14c). 

Since C is no longer diagonal, the equations were of course appropriately 
modified, starting from the basis-independent equations (13). Fortunately it 
remained true that C was "near-diagonal ,"  in the sense that to leading order 
in u its diagonal elements were its eigenvalues. Thus the discussion of Section 
4, for instance, remains true, provided c~ is understood to be the diagonal 
element c~ of  C. 

8. C O M P U T A T I O N A L  P R O C E D U R E  

The procedure for obtaining series coefficients breaks up into seven main 
stages 

(i) Determine the "s t ruc ture"  of  the equations and the leading powers 
of  the c~, as described in Section 4. 

(ii) Obtain a specification for which equations determined which matrix 
elements. This is given in Section 5. For  each new matrix element introduced 
in Section 7, one of the original matrix elements is fixed and this is done in 
such a way as to preserve the essential structure of  the iterative procedure 
described in Section 5. 

These first two stages were carried out by hand. 
(iii) Work through the equations as in Section 5 to determine the leading 

powers of  u in the expansion of each matrix element. 
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(iv) Determine the relative order needed in each matrix element to 
obtain K to the desired order m. 

(v) Determine the sequence in which the individual steps (one for each 
variable) in Section 5 should be performed. This sequence was required to 
produce one new term in one matrix element at each step. 

These three stages were carried out using a DEC-10 computer. The 
calculations required only short runs of comparatively small Fortran pro- 
grams. Steps (iii) and (iv) were carried out using up to 50 rows and columns 
of the matrices so as to be reasonably sure that no significant elements had 
been ignored. 

(vi) Calculate successive coefficients of the matrix elements in the order 
obtained from (v). 

(vii) As a cheek, substitute the solutions obtained into every matrix 
equation [including those which were not needed in steps (iii)-(vi)] to check 
that each equation is satisfied to the appropriate order in u. 

By dividing the calculations into stages in this way we ensured that 
only the short calculations of stages (iii)-(v) involved iterative procedures. 
In the longer calculations of stage (vi) each coefficient in each matrix element 
was calculated directly rather than being obtained as the limit of a sequence 
of improvements. 

9. C O M P U T A T I O N A L  D E T A I L S  

The most critical part of any computer calculation involving algebraic 
manipulation is normally the design of the data structures. Dividing the 
problem into stages as described in Section 8 enabled us to achieve some 
considerable simplifications. 

For stages (iii)-(v) only a limited amount of information was needed for 
each matrix element (leading power, required order, known order) and so 
the various properties could be conveniently stored using Fortran arrays. 
Each of the stages (iii)-(v) involved iterative procedures. Each equation from 
Section 5 was examined in turn and, if possible, used to refine the current 
quantity being calculated. This whole process was repeated until no further 
refinements occurred. 

Stage (iii) calculated leading powers [e.g., l~j in (33)]. The starting point 
for the iteration was to assume that the leading powers were arbitrarily large 
in all variables except the " f ixed"  variables and the c~. 

Stage (iv) calculated the required orders. The initial stage was a specified 
required order for •. Other variables were initially specified as being not 
required at all. 

Stage (v) operated by assuming that all earlier calculations had been 
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performed to specified orders. The program then searched cyclically through 
the equations, applying the following procedure: 

(a) Is the variable needed to one more order ? If  not, go on to the next 
equation. 

(b) Can the variable be calculated to one more order at this stage ? 
(I.e., are all the other variables in the equation known to sufficiently higher 
order ?) If  so, record this as the next step in the sequence of calculations and 
regard the variable as having been calculated. 

Since the procedure of Section 5 is purely empirical, it could have hap- 
pened at some stage that there were variables to update but no single equation 
which determined any one of them (i.e., we would have had to solve simul- 
taneous equations in order to proceed). Fortunately this did not occur. 

The knowledge of this iteration sequence for obtaining coefficients was 
exploited in the design of stage (vi). 

The calculation of • to order 23 involved about 270 matrix elements 
(and the variables ~, s and 7). Each of these quantities was a power series in 
u with from one to 24 terms. The coefficients were expressions of the form 
~a 7~=0 Cm~ m with n ranging from zero to over 100 (the leading power a was 
allowed to be negative). The number of Cm in all the terms of all the matrix 
elements grew roughly exponentially with the order to which K was calculated, 
70,000 numbers being required at order 23. Because of the sequential nature 
of the calculation it was possible to store these numbers in a linear array so 
that /x ~ ~ = o cm~ m was represented by the sequence (n, a, c0,.., e ~) and this 
sequence was stored immediately after the previous such sequence. Since 
each such polynomial was calculated correctly without any subsequent 
revisions and required for all subsequent orders, there was no need of any 
complicated memory management to allow for reuse of space formerly 
occupied by temporary intermediate quantities. The polynomials for various 
powers of u were located by an array of pointers associated with each matrix 
element. 

Like the memory requirements, the execution time and the maximum 
integers occurring grew exponentially with the order of  the calculation. It 
took about 16 sec of CPU time to reproduce the results of Sykes et  al. (7~ and 
slightly more than an hour to obtain K to order 23. At order 18 certain coeffi- 
cients exceed 235 - 1, the maximum integer allowed by our Fortran system. 
The calculations were therefore performed using modular arithmetic. The 
whole program was run twice, once with calculations being performed modulo 
235 and once with calculations being performed modulo 3937, so that the 
results in the appendix are correct modulo 235 x 3937. I f  the observed 
exponential growth in the size of the maximum coefficient is preserved through 
to order 23, then the values tabulated will be correct without any additional 
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multiples of  2 a5 x 3937. An additional reason for believing that such 
multiples are absent is that for /x  = + 1, both K and OK/~/~ agree with the 
known exact solutions. (9'~'12) 

10. V A R I A T I O N A L  A P P R O X I M A T I O N S  

We emphasize again that we have used the exact infinite-dimensional 
matrix equations (1), calculating al l  matrix element coefficients necessary to 
obtain K to order u ~3. 

At the same time, it is interesting to use our methods to test the vari- 
ational approximations proposed in I. These are obtained by restricting the 
matrices in (1) to be of  finite size. The natural sequence of such approxima- 
tions is to take the matrices to be 1 by 1, 2 by 2, 4 by 4, 8 by 8, etc.; and to 
be given at low temperatures as in Section 3. Tsang (8) has investigated these 
approximations numerically for the zero-field Ising model, and has found 
that they converge rapidly (extremely rapidly away from the critical point) 
to the known exact values. 

We can now answer the question: how many terms in the expansion of 
does a given approximation correctly reproduce 9. 

I t  was easy to modify our program so as to keep only elements occurring 
in a given approximation, and to then compare the resulting series for ~: 
with the exact one. 

The 1 by 1 approximation is that of  Kramers and Wannier. (4~ This 
correctly gives K to order u 5, and gives the coefficient of  u 6 correctly except 
that it omits the term Fgu 6. Thus 

~exaot - 'q  • = /z~  6 + O(u 7) (41a) 

Similarly, we have found that 

~exaot - ~*22 =/~25u1~ + O(u n)  

Kex~ot -- K4x~ = ~*~ + (9(u 15) (41b) 

~ox~ot - ~8 • - -  ~81u18 + e ( u  ~9) 

From these results it is apparent that the leading error in the 2 n- x by 
2 ~- 1 approximation is t x~2~ + ~>~u ~+ 2. Graphically, this is the contribution to 
K of a 2n + 1 by 2n + 1 square, consisting entirely of  reversed spins. 

A P P E N D I X  

The series expansion for K is of  the form 

~c = 1 + ~ ~ C(n,m)u"~ ~ 
' 0 , = 2  m 
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T h e  n o n z e r o  C(n, m) h a v e  

j <~ m <~ j% n = 2j 

j <~ m < ~ j ( j -  1), n = 2 j -  1 

A t  t~ = 1 ( H  = 0) b o t h  x a n d  the m a g n e t i z a t i o n  M [ = 1 + (~ /~H)(kTln  x)] 

are k n o w n  exactly.  T h e  zero- f ie ld  suscept ib i l i ty  is 

X = (~2/~H2)( k T l n  K)]n=o 

= 4 ( k T ) - l ( u  2 + 8u 3 + 60u ~ + 416u 5 + 2791u 6 + 18296u 7 

+ 118016u 8 + 752008u  ~ + 4746341u  1~ + 2 9 7 2 7 4 7 2 u  n 

+ 185016612u ~2 + 1145415208u ~3 + 7059265827u  1~ 

+ 4 3 3 3 8 4 0 7 7 1 2 u  15 + 265168691392u  16 + 1617656173824u  17 

+ 9 8 4 2 6 6 5 7 7 1 6 4 9 u  ~8 + 59748291677832u  19 

+ 361933688520940u  2~ + 2 1 8 8 3 2 8 0 0 5 2 4 6 3 0 4 u  2~ 

+ 13208464812265546u  22 + 7 9 6 0 0 3 7 9 3 3 6 5 0 5 3 4 2 u  ~~ 

C(2,1) 
I 

C(3,2) 
2 

C(4,2) TO C(4,4) 
-2 6 I 

C(5,3) TO C(5,6) 
-14 18 8 2 

C(6,3) TO C(6,9) 
8 -77 44 q0 22 6 I 

C(7,4) TO C(7,12) 
98 -370 40 138 134 72 30 8 
2 

C(8,4) TO C(8,16) 
-40 799 -1556 -424 221 546 462 310 
151 68 22 6 I 

+ ...) 

C(9,5,) TO C(9,20) 
-706 5304 -5470 -3708 -1222 1230 1896 1902 
1342 864 456 218 88 30 8 2 

C(I0,5) TO C(I0925) 
225 -7672 30348 -13598 -18964 -14444 -2696 3699 

7557 7444 6426 4572 2979 1728 914 426 
187 68 22 6 I 
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C(11,6) TO C(11,30) 
520R -65104 151574 -694 -65862 -87948 -49786 -17472 

13272 25458 31394 28974 24000 17746 12176 7574 
4472 2408 1208 560 238 88 30 8 

2 

C(12,6) TO C(12,36) 
-1362 70850 -467359 649535 262160 -87840 -378393 -337810 

-242384 -83084 12470 88700 119884 128778 117766 99290 
75882 55076 37234 23814 14364 8238 4410 2244 
1054 470 187 68 22 6 I 

C(13,7) TO C(13,42) 
-39030 732764 -2932576 2228858 2029462 874668 -1014862 

-1545118 -1625216 -1051706 -589506 -100010 213582 429998 
522638 549068 504642 435766 350336 267222 193180 
133968 88290 55970 33738 19574 10784 5664 

2816 1332 584 238 88 30 8 
2 

C(14,7) TO C(14,49) 
8670 -639433 6311938 -16244768 4560830 10051601 

9549646 762288 -4249586 -7695965 -6881592 -5583312 
-3337080 -1518502 97156 1164396 1945588 2281417 
2382596 2255598 2006540 1682052 1352688 1037676 
768638 546306 375856 249154 159656 98522 
58838 33768 18664 9866 5014 2408 
1106 470 187 68 22 6 

I 

C(15,8) TO C(15,56) 
296652 -7804442 47256224 -78778800 -10768506 32372408 

59058342 31112876 4952616 -23743438 -31567608 -33797354 
-27241336 -19920878 -11449760 -4791266 1316882 5415648 

8391488 9972394 10580136 10279976 9481042 8287220 
6980988 5647102 4426656 3356992 2473336 1766316 
1227956 828890 544458 346992 215208 129258 

75440 42520 23178 12160 6136 2960 
1360 584 238 88 30 8 

2 

C(16,8) TO C(16,64) 
-57253 5685542 -78352726 313892342 -322579472 

-186465885 12493642 261194858 238197716 159972553 
-597278 -86868766 -148295915 -153278297 -140530480 

-108483798 -78593018 -44988760 -18303116 5156834 
22564319 35587123 43185150 47169002 47364155 
45256582 41190974 36188632 30705631 25323304 
20273390 15829110 12041549 8948590 6487288 
4599332 3182598 2154074 1423134 918726 
578554 355542 212810 124132 70233 
38620 20524 10558 5202 2468 
1106 470 187 68 22 

6 I 

C(17,9) TO C(17,72) 
-2278538 80010676 -679161356 1863094888 -993191542 

-1251265124 -764445582 724510014 1183548008 1274083894 
635252528 127063826 -379872674 -616220230 -729611390 

-681225430 -601802848 -462209986 -333441648 -202229512 
-90986820 8428644 84160308 144560572 183938370 
208594416 217550716 215438532 203846368 186544548 
165178696 142441448 119644950 982a4398 78820104 
61956052 47670848 35977028 26611628 19314722 
13746848 9600928 6574570 4418162 2909010 
1877982 1186826 734714 444422 262906 
151632 85244 46600 24738 12696 

6300 2992 1360 584 238 
88 30 8 2 
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C(18,9) TO C(18,81) 
388802 -50032548 916955220 -5217511816 

9834974207 -1089145508 -5657415098 -7098109106 
-887090066 3635914388 6838712692 5540059481 
3680485502 831342834 -1147699828 -2666288478 

-3197910180 -3404412644 -3082431138 -2656113322 
-2087698748 -1546743800 -993051812 -521524459 

-87170874 259626592 547690090 756159986 
902055898 981708972 1011770298 995157736 
986239371 871933652 783431182 686678998 
589385362 495302608 808530636 330685268 
263068892 205658638 158148838 119586158 
89003823 65162530 46959378 33290568 
23229701 15940820 I076279N 7183314 
4660592 2986678 1879750 1160328 
702578 416448 241610 136848 
75685 40712 21304 10770 
5270 2468 1106 470 
187 68 22 6 

I 

C(19,10) TO C(19,90) 
17649910 -7976989~4 9016362186 

45188788806 13621335208 -14707405668 
-22532767840 -1569288086 25232887978 
29745477978 18615039168 7925920732 
-9591429088 -14806378468 -15739114870 

-18212502540 -12318554234 -9873798548 
-5225244528 -3152960096 -1216458816 
1814578926 2900887922 3739478444 
4629244778 4741404944 4686737324 
4188731988 3817870916 3409991942 
2569772506 2173560256 1809591182 
1197509370 952833304 787583408 
441254780 332060818 246552076 
130470700 92978850 65362832 
30963188 20855388 13883882 
582~898 3688490 2297646 
845040 498056 287682 
89800 48344 25338 
6336 2992 1360 
238 88 30 

2 

-36018566176 
-42179699380 
30719299520 
-3076407410 

-15741068066 
-7587998260 

414413968 
4297607820 
4486638128 
2986345974 
1482920164 
578263006 
180569152 
45302620 
9089282 
1405942 
162568 
12880 

588 
8 

C(20,I0) TO C(20,I00) 
-2699202 836976082 -10273840219 78353373965 

-224603332620 170177308196 137645380565 30290040193 
-181767876286 -176499399732 -118585422851 33966625668 
113112711312 162982828110 144892167071 109025803836 
52019575368 7935035690 -33346637431 -57056817287 

-72084727940 -75529606284 -74313139558 -67156106274 
-58949700218 -48584738492 -38697422840 -28508502848 
-19224958776 -18399824286 -2738836906 4111367087 

9755582174 14392370794 17858017887 20343275756 
21812028152 22462088640 22389550232 21655588075 
20482940924 18988024358 17260822518 15431749461 
13571789098 11760088162 10042540600 8460370720 
7032090196 5771299776 4676825349 3744177562 
2961386430 2314740106 1788009488 1365272026 
1030329734 768675138 566798557 413139584 
297596928 211864638 149017209 103558802 
71074110 48172590 32228382 21278938 
13857818 8899228 5631354 3510186 
2153196 1299326 770133 848272 
255710 182900 78009 41580 
21540 10886 5270 2468 
1106 470 187 68 

22 6 I 
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C(21,11) TO C(21,110) 
-137674532 7785746552 -112888535288 

-1261409345442 423106621732 891825413332 
-472416181748 -889395776028 -1021024867678 
115128451484 611780411810 769125941340 
581264541660 378018576704 130274078330 

-210575498342 -298783105656 -354043993498 
-355447107466 -324809631118 -289243215724 
-202439064366 -157512872880 -115950878666 
-39213719214 -5815541354 22949974670 
67989446690 83954158250 95419796290 

106861414854 107591334036 105552425648 
95499032950 88445185468 80608543682 
64153016790 56108367452 48459035782 
34893724540 29112899304 24024038986 
15848336942 12673741034 10031524258 
6098011504 4683766622 3561595390 
1998818468 1475082080 1077583166 
557695446 3950n666~ 27680R~18 
131574666 89207692 5%782024 
25900410 16731882 !066690~ 
a159626 9541224 1528112 
525376 299750 16760C 
490C8 25542 12920 
2992 1360 584 

R8 30 8 

612376056680 
704180055914 

-395226054492 
778247147438 
-56645505196 

-363169036964 
-245498356166 
-75563836072 
47885535776 

103015575062 
101387623842 
72415666818 
41360450420 
19615962248 
7860845428 
2681586246 
779248172 
191qN~6N 
3q593f)52 
6709910 
903944 
91728 
6336 
2%8 

2 

C(22,11) TO C(22,121) 
19076006 -3794770713 111304562027 

4346652233232 -6291768217070 -376126004360 
5592658217298 679016122604 -2724759534469 

-4382809075566 -2307752907687 794745448158 
3954323197056 3850259185456 3375918830835 
1282990166282 242272413516 -526697708097 

-1502912104262 -1721524481865 -1758761536061 
-1597795341798 -1447506956370 -1259323433439 
-874903651924 -686995664340 -501395669362 
-168407379252 -23992189363 106238437455 
311633846638 386664886313 444402432861 
509133385060 519203696700 517094841000 
483195403146 455421545217 423067326875 
350726691968 313517449971 277107077201 
209576736204 179469511693 152190239266 
106347020794 87667941990 71620746856 
46537111248 37020720378 29195990553 
17692629696 13595524004 10357675690 
5857133378 4347091080 3198142752 
1685113960 1206603136 856029487 
418753076 288625076 196956187 
88896396 58762848 38411074 
15841458 9985054 6212410 
2305732 1373310 805061 
262362 145456 78965 
21624 10846 5270 
1106 470 187 

22 6 I 

-1092704834228 
3129928307620 

-5789007505314 
2699292204678 
2306290801088 

-1153904785370 
-1722633811538 
-1072381885192 
-330299440430 
217467942226 
484449002118 
504300209966 
387633978474 
242244854088 
127815919430 
57986981032 
22825821468 
7822695960 
2331913666 
601590324 
133019859 
24816062 
3811952 
463756 
41840 
2468 

68 
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C(23,12) TO C(23,132) 
1080178538 -74731542218 1351003453762 

28127939528142 -26891781363918 -13207067538620 
31141664581778 18139538680866 1888468249182 

-27190235998138 -244369~7953846 -10650936005412 
13254410978582 181800379051~0 20~32280600446 
14386260860398 9206832077992 ~572222975832 
-3250077587556 -5895167942722 -7~13342739388 
-8563692206672 -8453916232204 -7947721447958 
-6528694002232 -5714827391066 -4841269003308 
-3145744362890 -2344094195940 -1568811393958 
-191459054670 399873582720 925320~42076 
1744588408594 2038992013684 2261547377836 
2500308625556 2529044171728 2507995388538 
2344334766176 2217554998498 2071056094176 
1743783003478 1574261974430 1407015953008 
1092038934718 948961018146 817468033792 
591348668150 496769408092 413983573728 
280767712426 228541284508 184612447588 
117745607452 92974018006 72865154256 
43754944118 33524837122 25493281372 
14407761188 I0706769444 789479757~ 
4191594878 3017463414 2154461718 
1070902030 745270346 514072144 
237929952 159565440 105960218 
45293968 29134370 1852837~ 
7226144 4426312 267438~ 
933808 538576 305258 
92456 49232 25586 
6336 2992 1360 
238 88 30 

2 

-9503167548524 
4522686599434 

-22904276527452 
1549143457220 

18055038292228 
30735576280 

-8349691212982 
-7322910909586 
-3997099216886 
-854735681794 
1371356526908 
2412463077942 
2443452302656 
1910986572650 
1245329036872 
698172964190 
342261568638 
147993501574 
56676557478 
19238482582 
5775520084 
1525425028 
351367848 
69643618 
11642842 
1592464 
169712 
12920 

584 
8 
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